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Abstract-A third-order shell theory based on Reddy's parabolic shear strain distribution is
presented. Upon applying the Donnell shallow shell approximation, the present theory leads to
Reddy's formulation in the case that the laminate has a Euclidean middle surface and constant
principal radii ofcurvatures. To accommodate the effect of the continuity condition of interlaminar
transverse shear stresses, the shear correction factors are introduced to modify the shear strains in
the present higher order theory. The shear correction factors are calculated using an iterative
formulation based on the "shear strain energy equivalence". The shell solutions are compared with
the elasticity solutions to assess the improvement of using the higher order theory, coupled with the
shear correction factors, in predicting the structural responses of moderately thick laminates.

INTRODUCTION

The global shear deformation theories, which treat a laminate as a single-layer shell, provide
a compromise between accuracy and computational efficiency in predicting the structural
responses oflaminated structures. The first-order shear deformation theory (FSDT), based
on the works ofReissner (1945) and Mindlin (1951) for isotropic plates, has been extensively
employed in the analysis of moderately thick laminates. However, the constant transverse
shear strain assumption along the thickness direction in the FSDT violates the prescribed
boundary traction conditions and continuity requirements of the interlaminar shear stresses.
Therefore, shear correction factors are introduced to accommodate the effect of non
uniform shear strain distribution. A large number of works have been devoted in selecting
the "exact" or "improved" values of shear correction factors (Whitney, 1973; Noor and
Peters, 1989; Huang, 1993).

Several higher order shear deformation theories (HSDT), based on a nonlinear dis
tribution of displacements in the thickness direction, have been developed (Noor and
Burton, 1990). One of these theories, with a growing popularity for laminate analysis, is
the third-order theory of Reddy (Reddy, 1984; Reddy and Liu, 1985). By imposing the
zero shear strain conditions on the lateral surfaces of the laminates, the nine displacement
parameters are reduced to five as in the FSDT. The resulting transverse shear strain
distribution is parabolic. With zero transverse shear strain on the surfaces and parabolic
shear strain distribution in the thickness direction, it is generally thought that Reddy's
HSDT does not require shear correction factors.

The enforced parabolic shear strain distribution represents a close approximation to
the true shear strain distribution for a shallow single-layer shell. However, for the cases of
multilayered laminates, the continuity condition on the interlaminar shear stresses implies
a piecewise continuous shear strain distribution in the thickness direction. Reddy's theory,
which approximates in-plane displacements up to the cubic order, produces better in-plane
responses than does the FSDT. However, Reddy's HSDT does not consistently yield more
accurate deflections than the FSDT with shear correction factors equal to 5/6, especially
for laminates with a large number of layers (Khdeir and Reddy, 1991). Therefore, it raises
a question whether the introduction of shear correction factors will further improve the
performance of the higher order shear deformation theory?
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The effect of the shear correction factors on the HSDT is examined in this study. First,
a shell formulation based on the orthogonal curvilinear coordinates, modified from Reddy's
third-order shallow theory, is presented. The present theory is applicable to deeper shells.
For the case of a laminate having a Euclidean surface and constant radii of curvatures, the
present theory leads to the same shell formulation as Reddy's HSDT when the Donnell
shallow shell approach is applied. The shear correction factors are introduced, similarly as
in the FSDT, into the HSDT to modify the transverse shear strain distribution. The shear
correction factors are determined from the shear strain energy equivalence formulation, in
which the strain energy corresponding to the "quasi-three-dimensional" (quasi-3-D) shear
stresses is set equal to the transverse shear strain energy based on the shell theory. The
quasi-3-D stresses are the transverse stresses calculated from the three-dimensional (3-D)
equilibrium equations; these have more accurate values and distribution profiles than the
transverse stresses calculated from the constitutive equations.

For curved panels, the transverse shear stresses, obtained directly by integrating the
3-D equilibrium equations, usually do not satisfy either boundary traction conditions or
interlaminar stress continuity requirements. In this study, a set ofmodified 3-D equilibrium
equations reduced from the elasticity equations are employed to calculate the quasi-3
D stresses. The resulting transverse stresses nearly satisfy both traction conditions and
interlaminar stress continuity requirements.

The values of shear correction factors depend on the loading conditions, boundary
conditions, structural geometries and the details of laminations; the values generally are
functions of surface coordinates instead of constants (Huang, 1993). Exact values usually
can not be determined directly from the shear strain energy equivalence formulation. An
iterative version of shear strain energy equivalence formulation is employed to calculate
the values of the shear correction factors for the doubly curved laminates. The improvement
of the HSDT coupled with shear correction factors in predicting structural responses of
laminated shells (including plates) is examined by comparing the shell solutions to the
elasticity solutions.

SHELL EQUATIONS

Consider the middle surface of a doubly curved shell defined by a pair of coordinates
(; 1and ; 2) of an orthogonal curvilinear coordinate system (; 1, ; 2, ; 3). The surface coor
dinates are also lines of principal curvatures of the middle surface. The shell thickness
direction is coincident with the third coordinate; 3 (also referred to as z) as shown in Fig.
1. The; 3 coordinate (or z) is always taken to be a physical coordinate. The Lame parameters
of the middle surface are denoted as A 1 and A 2' The radii of curvatures along; 1 and; 2

curves are R I and R 2, respectively. The laminated shell is constructed ofan arbitrary number
(N) of orthotropic layers with the principal material directions of orthotropy oriented at
some arbitrary angle with respect to the ; I and ; 2 coordinates of the shell. The shell
considered has a thickness h.

Fig. 1. Doubly curved laminated shell.
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The displacements (u, v, w) of an arbitrary point in the shell are expressed as (Librescu
et al., 1989)

u«( h (2' z) = UO«( h (2) -ZOI «( h (2) _Z2¢ 1«( h (2) -z3t/!, «( h (2)

v«( h (2) z) = VO«(" (2)-Z02«(h (2) -Z2¢2«(h (2) -Z3t/!2«(h (2)

W«(h(2,Z) = WO«(h(2)' (I)

The relations between transverse shear strains and displacements are

(2)

in which a comma denotes differentiation with respect to the subscript. In deriving the
above expressions, the Love first-order geometric approximation has been invoked (neglect
ing z/R, and z/R2). It is noted that the Donnell simplification can be accomplished by
omitting the terms uO/R 1 and vO/R2from eqns (2) (underlined terms) (Soedel, 1981). The
explicit expressions of e4 and e5 are

e4 = -02+W,02/A2-2z¢2-3z2t/!2-Vo/R2

e5 = -0 1 +w,o,/A,-2z¢I-3z2t/!I-uo/R 1• (3)

Imposing the zero transverse surface shear strain conditions leads to the following results

(4)

with

(5)

Consequently, the in-plane displacements are of the form

(6)

The components of the Lagrangian infinitesimal strain tensor, calculated from the
above assumed displacement fields [eqns (I) and (6)], can be expressed as

e; = e?+z(K;+z2A;), i = 1,2,6

em = (1- 3cz2)e~, m = 4,5

in which e~ are listed in eqns (5), and e?, K; and A; are

e? = u~dA, +voAt.2IAdA2+wo/R1

e~ = v~2/A2+UoA2,dAdA2+Wo/R2

e~ = v~,/A, + u~2/A2 -voA2,,/A,/A2-uoA t.2IA,/A2

Kl = -01,l/A 1 -02A t.2IA dA2

K2 = -02,2/A2-OIA2,,/AdA2

K6 = -02,dAI-0I,2/A2+02A2,dAdA2+0,AI,2/AdA2

A, = -c[e~,dA, +e~At.2IAdA2]

,,1,2 = -c[e~,2/A2+e~A2,1/A,/A2]

,,1,6 = -c[e~,dAI +e~,2/A2 -e~A2,,/AdA2 -e~AI,2/AdA2]'

SAS 31:9-F

(7)

(8)
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To accommodate the effect of the continuity condition of interlaminar shear stresses,
following the approach adopted by Kane and Mindlin (1956) and Whitney (1972), the
shear strains em are modified as

(9)

in which Km are the shear correction factors. A proposed procedure to select the values of
the shear correction factors is presented in the next section. The corresponding transverse
shear stresses in the kth lamina are

(10)

The gross equilibrium equations are obtained using the principle of the virtual work.
The resulting shell equations are

(A2NI).I-A2.IN2+AI,2N6

+(A IN6b +A IA2Q5/RI + (c/R t)[(A 2P I),1 -A2.IP 2+A 1,2P6+ (A IP6),2l = 0 (11)

(A IN2),2 -A 1,2NI +A 2,IN6

+(A 2N 6),1 +AIA2Q4/R2+(c/R2)[(AIP2b-A1,2PI +A 2,IP6+(A 2P 6),d = 0 (12)

A IA 2N I/R I +A IA 2N 2/R 2- (A 2Q5),1 - (A IQ4),2 -c[(A 2P I),dA d,1 +c(A 1,2PdA2).2

-c[(A IP2b/A 2],2 +c(A 2,IP2/A 1),1 -c[(A IP6),2/A d,l -c[(A 2P 6),I/A 2],2

-C(A2,IP6/A2b-c(AI,2P6/AI),I-AjA2(q+ +q-) = 0 (13)

(A 2M I ),1 -A 2,IM2+A 1,2M6+(A IM6),2 -A IA 2Q5

-C[(A2PI),t-A2,IP2+AI,2P6+(AIP6bl = 0 (14)

(A 1M 2b-A I,2MI +A2,IM6+(A2M6),I-AIA2Q4

-c[(AIP2b-AI,2PI +A 2,IP6+(A 2P6).d = 0, (15)

The equivalent surface tractions q+ and q- in eqn (13) are related with prescribed traction
p+ on the surface z = h/2 and traction p- on the other surface z = -h/2 as follows:

(16)

The stress resultants in eqns (11)-(15) are related to e?, e~, K; and Ai as

N i = Aijejo +BijKj +EijAj' i, j = 1,2,6

M; = Bije} +DijKj +FijAj , i,j = 1,2,6

P; = E;Ao+F;jKj +HijAj, i, j = 1,2,6

Qm = Smne~, m, n = 4,5. (17)

Stiffnesses A ij , B;j, Dij, Eij, F;j, Hij and Smn are defined as follows:

i,j = 1,2,6
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(18)

where Qij are the transformed reduced stiffnesses, and Qmn are the transformed shear
stiffnesses.

The corresponding boundary conditions along edge eI = constant are fulfilled by
specifying the following displacements or forces

UO or N] +cP./R]

VO or N 6+cP6/R 2

WO or (A2MI).1-A2.IM2+(AIM6b+AI.2M6+cAIP6.2

WO or PI.1

()I or -M]+cPI

()2 or -M6+cP6·

The boundary conditions along edge e2 = constant are analogous to the above expressions.
The shallow shell formulation based on the Donnell approximation can be obtained by

neglecting the underlined terms from the related expressions. The shallow shell formulations
leads to the Reddy formulation for the case in which the laminate has a Euclidean middle
surface and constant curvatures. Setting the parameter c equal to zero, the present theory
is reduced to the FSDT. It is known that the FSDT yields a solution corresponding to the
classical laminate theory when the shear correction factors are assigned a very large value.

CALCULATION OF SHEAR CORRECTION FACTORS

Shear strain energy equivalence formulation
The following set of shear strain energy relations, obtained by equating the strain

energy corresponding to the quasi-3-D shear stresses to the shear energy based on the shell
theory, are employed to select values for K 4 and K s

(19)

in which (umh and (Bm)k are the quasi-3-D shear stresses and shear strains in the kth layer.
Stresses (umh in the above equations are obtained by integrating the 3-D equilibrium
equations along the thickness direction. For a laminate having arbitrary lay-up, substituting
the stress-strain relations into eqns (19) yields the following expressions

(20)

where

(21)

Since the energy principle can be employed to derive the gross equilibrium equations,
the use of shear strain energy equivalence formulations (20) and (21) to determine the
values of Km is a reasonable and consistent approach.



1268 N. N. HUANG

Modified 3-D equilibrium equations
The quasi-3-D shear stresses in the energy equivalence formulations are obtained from

the 3-D equilibrium equations. In an orthogonal curvilinear coordinate system, the 3-D
equilibrium equations are (Leipholz, 1974)

3 3

L (h Ih2h3hiaij/hj ),j - L hIh2h3(hj),;ajj/hj = 0, i = 1,2,3; not summed. (22)
j= I j= I

In the shell coordinate system shown in Fig. I, the scale factors hi in the above equations
are

(23)

and the first two equations (i = I, 2) of eqns (22) can be written explicitly as follows:

(24)

(25)

With stresses (al h a12' an) calculated from the shell theory, it is not difficult to show that
transverse shear stress distributions (a23 and a13) along the thickness direction can be
obtained through the integration of eqns (24) and (25),

For an N-Iayer laminate, the integration of eqns (24) or (25) over the thickness yields
a total of N unknown coefficients. However, the number of boundary traction conditions
and interlaminar stress continuity requirements is (N+ I). Therefore, shear stresses obtained
from eqns (24) and (25) do not always satisfy both boundary conditions and continuity
requirements. Here, the following modified equations

are employed to determine the consistent shear stress distributions for the shell analysis. In
the cases of the FSDT (c = 0) and shallow shell theory (with underlined terms neglected),
by imposing the zero shear traction condition on either surface, the zero traction condition
on the other surface will be satisfied automatically. This is because the integrations of eqns
(26) and (27) through the whole thickness will reproduce shell equations (11) and (12), and
these two equations have been satisfied in the shell analysis. For the present theory,
integrating the products of eqns (26) and (27) by factors

1+ cz 3
/ R j , i = 1 for eqn (26), i = 2 for eqn (27)

yields eqns (11) and (12), and the following integrals
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i = 1,2; not summed.

Therefore, the quasi-3-D shear stresses calculated from eqns (26) and (27) nearly satisfy
both the traction condition and the continuity requirement.

Iterative shear strain energy equivalence formulation
The values of Kmcan be determined from eqns (20) and (21) if stresses (O"mh can be

expressed in terms of stress resultants Qm' Unfortunately, it seems that this condition does
not exist in most structural problems. To overcome the difficulty, an iterative version of
eqns (20) is employed to determine the shear correction factors for laminates having
arbitrary lay-up. Let

N iZk (Q- ) (0" )(I)_(Q- ) (0" ) (i) K(i+I)A Q(I)-JK(i+l)K(i+I)A Q(I)" ()O) 55 k 4 k 45 k 5 k = Q(i) 5 55 4 4 5 45 5
L- 0"4 k ~ 4 K(i+ I) K(i+ I)~

k = I zk _ 1 I 4 5 2

N iZk (Q- ) (0" )(I)_(Q- ) (0" )(1) K(i+I)A Q(I)-JK(i+I)K(i+l)A Q(I)
" ()(I) 44 k 5 k 45 k 4 k = Q(l) 4 44 5 4 5 45 4 (28)
L- 0"5k ~ 5 K(i+l)K(i+I)~ ,

k = 1 zk _ 1 1 4 5 2

where (l) indicates the ith iteration. Initially the correction factors K~) can be assigned
arbitrary values. Upon solving the shell problem using eqns (11)-(15), the resultant forces
Q~) are determined and the quasi-3-D shear stresses (O"m)kO) can be obtained from eqns (26)
and (27). The improved values K~l) can then be calculated from eqns (28). The same
procedure is repeated until convergence is achieved. It is shown in the examples presented
hereafter that one iteration is usually sufficient to produce near-converged values.

The algorithm described by eqns (28) is particularly useful for numerical methods
based upon a discretization scheme. However, the application of (28), used in conjunction
with analytical procedure based on the continuum approach, is limited. This is because, in
general, the values of shear correction factors vary over the laminate. That is, after the first
iteration the laminate changes from a presumed homogeneous material (in the surface
directions) into a heterogeneous material in the sense that stiffnesses Smn are no longer
uniform throughout the laminate. This poses a difficulty for subsequent analyses (using
analytical methods). One exception to the above limitation occurs when cross-ply laminates
admit series-type closed form solutions (Navier solutions). The shear correction factors
corresponding to each individual mode of the series expansions are constant. Therefore,
formulations (28) are seen to be suitable for such problems.

NUMERICAL EXAMPLES AND DISCUSSIONS

The shear correction factors and corresponding structural responses of symmetric and
antisymmetric cross-ply laminated shells (including plates) are calculated. For these par
ticular types oflaminates, both shear stiffnesses (Q45h and A 45 vanish. Therefore, iterative
formulations (28) are reduced to

m = 4,5; not summed. (29)

It is noted that K 4 and K 5 can be determined separately from the above formulations.
The laminates considered have rectangular platforms. The surface coordinates are

denoted as x and y instead of ~ 1 and ~ 2' The Lame parameters A I and A 2 are taken to be
unity, i.e. (ds)2 = (dx) 2+ (dy) 2. It is important to mention that this metric equation leads
to approximate formulations in the cases of shallow, doubly curved surfaces. The edge
widths of the middle surface along the x and y directions are a and b, respectively. The
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constant radii of curvatures of the middle surface in the x and y directions are denoted by
Rx and Ry , respectively.

The laminates are constructed regularly in the sequence of [0°/90% °/...J with equal
layer thickness. The following lamina material properties are used (Pagano, 1970)

V12 = VI3 = V23 = 0.25.

(30)

The upper surfaces of the laminates are subjected to the sinusoidally distributed loading,
p+ = Psin (nx/a) sin (ny/b).

The laminates considered are simply supported in such a manner that the edges are
fixed against tangential displacements but free to translate in the normal direction. In the
shell analysis, the specified kinematic conditions along the edges are

(31)

and the force conditions are

(32)

where subscripts nand s indicate the normal direction to the edge and the tangential
direction along the edge. The edge's kinematic conditions of the one of the corresponding
3-D problems are

Us = w = o. (33)

Closed-form solutions of shell problems with boundary conditions (31) and (32) can be
obtained. The solution algorithms are analogous to those of Reddy's plate and shallow
shell problems (Reddy, 1984; Reddy and Liu, 1985). The solutions for displacements have
the form

o -0 Ii (nx). (ny)(u , Ox) = (u , t1Jcos a sm b

_ . (nx) . (ny)
W

O
= W

Osm a sm b

o -0 A • (nx) (ny)(v , Oy) = (v , Oy) sm a cos b .

The details will not be provided here. Elasticity solutions to the 3-D shell problems and
plate problems with boundary conditions (33) can also be obtained. Solution strategies
listed in the literature (Pagano, 1970; Huang and Tauchert, 1991, 1992) are employed to
obtain the exact solutions for the purpose of comparison.

Due to the simplification of the displacement field in the shell theory (especially
deflection w), the relation between the 2-D problems and 3-D problems is seldom one-to
one. For example, the structural response of a solid shell with edges fixed against transverse
deflection over the whole thickness [as described in eqn (33)] is identical to the predicted
response of the same shell fixed against deflection along the center line of the edges with
following kinematic boundary conditions

(34)

when analyzed using the present shell theory. This is because these two different supporting
conditions [eqns (33) and (34)] for the 3-D problems correspond to the same boundary
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conditions [eqns (31) and (32)] for the shell problems. This causes certain difficulty and
controversy in evaluating the shell theories for a moderately thick laminate having low
transverse elastic stiffnesses. In this respect, the elasticity solutions corresponding to the
boundary conditions (33) can only provide approximate "lower-bound" deflection mag
nitudes for assessing the accuracy of the deflection responses predicted using the shell
theories.

Closed-form solutions of the stresses and transverse shear forces in shell problems
having boundary conditions (31) and (32) are given by

A (nx) (ny
)(ixy = (ixy(z) cos ---;; cos b

A • (nx) (ny )
Qyz = Qyz sm ---;; cos b

A (nx) . (ny )
Qxz = Qxz cos ---;; sm b .

(35)

(36)

(37)

(38)

The quasi-3-D stresses, obtained by substituting (iw (iyy and (ixy in eqns (35) and (36) into
eqns (26) and (27), take the form

. (nx) (ny)(iyz = c1yz (Z) sm ---;; cos b

A (nx) . (ny )(ixz = (ixz(z) cos ---;; sm b .

(39)

(40)

The shear correction factors Km can then be determined from iterative formulations (29).
It is noted that Km are uniform over the laminate for this special loading condition.

Cylindrical laminates (including plates)
First, consider rectangular (bla = 3) laminated cylindrical panels and plates. The

convergence rate of shear correction factors, calculated from iterative formulations (29),
of a five-layer cylindrical laminate with Rxla = 2 and alh = 5, are shown in Table l. The
corresponding center deflections w, calculated using shell theories (Wsh) and elasticity theory
(Wei)' are also listed in this table. The initial values of K 4 and Ks are taken to be I, which
lead to the same results predicted by using the Reddy theory in the case where the shallow
shell theory is employed. A rapid convergence rate is observed; a single iteration gives

Table 1. Convergence rate of shear correction factors and center deflections ofa five-layer cylindrical
laminate (Rx/a = 2, b/a = 3, a/h = 5)

Iteration
No. (K4, Ks)t W'ht (K4, Ks)t

0 (1, 1) 2.036 (1, 1)
1 (0.7753, 0.7962) 2.375 (0.7759,0.7959)
2 (0.7744,0.7951) 2.377 (0.7750,0.7948)
3 (0.7744,0.7951) 2.377 (0.7750,0.7948)

W'ht Wei

1.936
2.260 2.333
2.264
2.264

(Iii'h' Wei) = (wsh(a/2, b/2, 0), wel(a/2, b/2, O»/h X E2/p X (h/a) 4
X 100.

t Present theory.
t Shallow shell theory.
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satisfactory results of Km and deflections. It is also noted that the HSDT coupled with shear
correction factors yields more accurate deflections than does the use of the HSDT without
resort to the shear correction factors (letting Km = 1).

The elastic responses, predicted by shell and elasticity theories, of laminates having
various number (N) of layers, and various ratios of Rx/a and a/h, are reported in Tables
2-5. Table 2 shows the center deflections of the cross-ply laminates. The deflections on the
upper surface of some moderately thick laminates predicted from the elasticity theory are
also included in this table. For the laminates with a/h = 10, the variation of the deflection
magnitude along the thickness is seen to be negligibly small. For the laminates with Rxla = 1,
deflections predicted using both the present theory and the shallow shell formulations are
reported. A large discrepancy between the shallow shell solution and the elasticity solution
is observed. However, for the shallow, thin shells (Rxla = 4, a/h = 50), the deflection
responses corresponding to the shallow shell theory are close to the elasticity solutions.

Table 2. Nondimensional center deflections, w= w(aI2, b12, O)lh x E 21p x (hla) 4 x 100, of laminated cylindrical
panels and plates (bla = 3)

Layer No.
RJa alh Theory N=2 N=3 N= 4 N=5 N=1O

Elast. (4.381) (2.727) (3.720) (2.826) (3.311)
Elast. 4.392 2.716 3.707 2.818 3.300

5 Shel1t 4.308 2.525 3.109 2.458 2.918
Shel!:l: 4.463 2.758 3.804 2.859 3.330
Shel1§ 3.753 2.053 2.606 2.001 2.410
Shel1~ 3.988 2.247 3.278 2.333 2.790

Elast. (2.964) (1.149) (1.845) (1.237) (1.622)
Elast. 2.977 1.153 1.851 1.242 1.623
Shel1t 2.954 1.077 1.685 1.144 1.531

10 Shellt 2.994 1.149 1.861 1.238 1.627
Shel1§ 2.563 0.8773 1.413 0.9339 1.267
Shel1~ 2.607 0.9370 1.571 1.012 1.352

Elast. 0.7286 0.4082 0.5672 0.4436 0.5356
Shel1t 0.7287 0.4060 0.5659 0.4414 0.5343

50 Shel1t 0.7289 0.4073 0.5673 0.4427 0.5352
Shel1§ 0.6964 0.3536 0.5184 0.3890 0.4845
Shel1~ 0.6966 0.3548 0.5199 0.3902 0.4855

Elast. (3.749) (2.161) (3.075) (2.245) (2.686)
Elast. 3.745 2.118 3.042 2.205 2.648

5 Shel1§ 3.641 1.944 2.494 1.896 2.298
Shel1~ 3.871 2.131 3.155 2.217 2.669

Elast. 2.783 0.9396 1.609 1.020 1.381
4 10 Shel1§ 2.750 0.8712 1.441 0.9308 1.283

Shel1~ 2.799 0.9323 1.612 1.011 1.373

Elast. 2.139 0.5129 1.043 0.6059 0.9113
50 Shel1§ 2.121 0.5041 1.027 0.5956 0.8981

Shel1~ 2.123 0.5066 1.033 0.5986 0.9013

Elast. (3.713) (2.102) (3.015) (2.183) (2.626)
Elast. 3.705 2.051 2.976 2.135 2.576

5 Shel1t 3.570 1.899 2.447 1.852 2.246
Shel1t 3.794 2.082 3.088 2.166 2.610

Elast. 2.776 0.918911 1.589 0.9981 1.357
Plate 10 Shel1t 2.743 0.8622 1.430 0.9214 1.272

Shel1t 2.792 0.9235 1.601 1.001 1.361

Elast. 2.475 0.520511 1.106 0.6195 0.9550
50 Shel1t 2.474 0.5179 1.099 0.6164 0.9515

Shel1t 2.476 0.5205 1.106 0.6196 0.9551

Figures in parentheses indicate elasticity results sampled on z = h12.
t HSDT with Km = I.
t HSDT with Km calculated from eqns (29).
§Shallow HSDT with Km = I.
~ Shallow HSDT with Km calculated from eqns (29).
II Also see Pagano (1970).
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Table 3. Nondimensional displacements, Ii = u(O, b/2, z)/h x EJp x (h/a) 3 x 100 and v= v(a/2, 0, z)/h x E2/p x
(h/a) 3 x 100, of laminated cylindrical panels and plates (b/a = 3)

Ii v
Rx/a a/h Theory N=3 N=4 N=5 N=3 N=4 N=5

Elast. 5.831- 7.835- 6.000- -1.823+ -1.620+ -1.742+
5 Shellt 5.406- 6.849- 5.376- -1.678+ -1.473+ -1.532+

Shellt 5.825- 8.081- 6.080- -1.798+ - 1.752+ - 1.739+

Elast. 4.707- 7.374- 5.097- -1.012+ -1.175+ -1.025+
10 Shellt 4.427- 6.855- 4.783 - -0.9328+ -1.091 + -0.9398+

Shellt 4.670- 7.439- 5.095- -0.9862+ -1.199+ -1.009+

Elast. 2.100- 2.915- 2.155- -1.084+ 1.539- -1.069+
5 Shell§ 1.930- 2.641- 1.976- -1.028+ 1.247- -0.9504+

Shell~ 2.049- 3.052- 2.167- -1.117+ 1.497- -1.083+
4

Elast. 1.681- 2.701- 1.855- -0.5568+ 0.8849- -0.5870+
10 Shell§ 1.579- 2.542- 1.760- -0.5215+ 0.7911- -0.5418+

Shell~ 1.643- 2.715- 1.840- -0.5563+ 0.8662- -0.5838+

Elast. 1.222- -3.663+ -1.251+ 1.003 - 1.624- 0.9942-
5 Shellt 1.130- -2.524+ -1.195+ 0.9202- 1.310- 0.8554-

Shellt 1.175- -2.728+ -1.257+ 1.000- 1.578- 0.9727-
Plate

Elast. 0.9197- -2.536+ 1.029- 0.4746- 0.9879- 0.5069-
10 Shellt 0.8779- -2.206+ 1.011- 0.4401- 0.8843- 0.4638-

Shellt 0.8926- -2.258+ 1.026- 0.4697- 0.9711- 0.4993-

tHSDTwith Km = 1.
t HSDT with Km calculated from eqns (29).
§Shallow HSDT with Km = 1.
~ Shallow HSDT with Km calculated from eqns (29).
+Values calculated on z = h/2.
- Values calculated on z = -h/2.

Table 2 reveals that the improvement of the HSDT incorporated with shear correction
factors in predicting the deflections is significant for the laminates having a large number of
layers (N = 4, 5, 10). For example, for the case of a five-layer laminate with Rx/a = 1 and
a/h = 5 the ratio of center deflections between the shell solution with Km = 1 and the
elasticity solution is equal to 87.22%; meanwhile the ratio between the shell solution with
Km calculated from eqns (29) and the elasticity solution is 101.5%. For the cases of two
layer laminates, the HSDT with Km = 1 and Km calculated from eqns (29) produce fairly
accurate results; the discrepancy between shell solutions and elasticity solutions is very
small for all the cases considered.

The in-plane displacements (u, v) predicted from shell theories and elasticity theory
are shown in Table 3. Displacements are sampled on the upper surface (z = h/2) or lower
surface (z = -h/2), at which their maximum values occur. It is observed that the HSDT
theory coupled with the shear correction factors gives better results than the HSDT without
shear correction factors. In-plane stresses (0"xx, 0"yy' 0"xy) are reported in Table 4. The stresses
are calculated at locations where their maximum values or near-maximum values occur.
Comparing the shell solutions to the elasticity solutions, it is noted that the shell theory
with Km = 1 and Km calculated from the energy equivalence formulation yields acceptable
results. The improvement of the HSDT coupled with shear correction factors is more
significant in predicting stresses O"yy and 0"xy than in predicting 0"xx' The transverse quasi
3-D shear stresses, calculated from eqns (26) and (27), are reported in Table 5. It is seen
that shell solutions are close to the elasticity solutions.

Spherical laminates (including plates)
The effect of shear correction factors on the deflection responses ofspherical laminates

(R, = Rv = R) and plates is also investigated. The nondimensional center deflections of
laminates having various numbers oflayers and various ratios of R/a and a/h are shown in
Table 6. For laminates with a/h = 5, the deflections on the upper surface are also included
in this table to show the variation of the deflections in the thickness direction. The effect of
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Table 4. Nondimensional stresses (u", uy_" uxy) = (uxx(a/2, b/2, z), uyy(a/2, b/2, z), ux,(O, 0, z»/p x (h/a) 2 of laminated cylindrical panels and plates (b/a = 3)

tixx Uyy x 10 Uxy x 10
Rx/a a/h Theory N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

Elast. -1.293- -1.668- -1.301- 2.41111 4.672+ 3.13211 0.4371- 0.6597- 0.4561-
5 Shellt -1.094- -1.500- -1.154- 2.22811 4.091 + 2.78411 0.4046- 0.5475- 0.3983-

Shellt -1.132- -1.600- -1.207- 2.38711 4.838+ 3.13911 0.4325- 0.6389- 0.4479-

Elast. -0.8534- -1.222- -0.9436- 1.60211 3.314+ 2.04411 0.2725- 0.4883- 0.3030-
10 Shellt -0.7876- -1.176- -0.9000- 1.49811 3.049+ 1.89511 0.2581- 0.4478- 0.2839-

Shellt -0.7982- -1.194- -0.9098- 1.58611 3.333 + 2.03011 0.2712- 0.4842- 0.3019-

Elast. -1.022- -1.388- -1.040- 1.11611 3.117+ 1.76311 0.2588- 0.4006- 0.2626-
5 Shell§ -0.9125- -1.301- -0.9641- 1.02811 2.640+ 1.54711 0.2356- 0.3342- 0.2293-

Shell~ -0.9484- -1.418- -1.014- 1.1 1211 3.209+ 1.74111 0.2533- 0.3952- 0.2562-
4 ;z:

Elast. -0.7463- -1.137- -0.8340- 0.646811 2.045+ 1.04711 0.1510- 0.2822- 0.1660- ;z:
10 Shell§ -0.6985- -1.100- -0.8037- 0.603711 1.846+ 0.962311 0.1405- 0.2573- 0.1543-

Shell~ -0.7101- -1.129- -0.8160- 0.642111 2.038+ 1.03111 0.1476- 0.2782- 0.1630- ::t:
~
>

Elast. 0.9835+ -1.325- 1.000+ -0.9023tt 2.809+ -1.528tt 0.2215- 0.3429-
z

0.2214- C'l

5 Shellt 0.8924+ -1.275- 0.9430+ -0.7843tt 2.378+ -1.320tt 0.2037- 0.2903- 0.1969-
Shellt 0.9277+ -1.391- 0.9926+ -0.8468tt 2.881 + -1.477tt 0.2187- 0.3401- 0.2186-

Plate
Elast. 0.726O+H -1.116- 0.8120+ -0.4349ttH 1.740+ -0.8297tt O.1227-H 0.2292- 0.1335-

10 Shellt 0.6924+ -1.094- 0.7969+ -0.3981tt 1.581+ -0.7621tt 0.1151- 0.2115- 0.1258-
Shellt 0.7040+ -1.124- 0.8094+ -0.4227tt 1.743+ -0.8139tt 0.1205- 0.2271- 0.1322-

t HSDT with Km = 1.
tHSDTwith Km calculated from eqns (29).
§Shallow HSDT with Km = 1.
~ Shallow HSDT with Km calculated from eqns (29).
\I Values calculated on the upper face of the second layer.
ttValues calculated on the lower face of the second layer.
HAlso see Pagano (1970).
+Values calculated on z = hj2.
- Values calculated on z = -h/2.
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Table 5. Nondimensional transverse shear stresses axz = 0',,(0, b/2, O)/p x (h/a) and ay, = O'y,(a/2, 0, O)/p x (h/a)
of laminated cylindrical panels and plates (b/a = 3)

Gxz ayz x 10
Rx/a a/h Theory N=3 N=4 N=5 N=3 N=4 N=5

Elast. 0.4447 0.5392 0.4831 0.3442 0.8547 0.5104
5 Shellt 0.4794 0.5946 0.4564 0.3169 0.7233 0.4498

Shellt 0.4729 0.5793 0.4471 0.3304 0.8117 0.4906

Elast. 0.4697 0.5597 0.4544 0.1848 0.5567 0.2904
10 Shellt 0.4821 0.5781 0.4491 0.1746 0.5028 0.2679

Shellt 0.4790 0.5701 0.4456 0.1798 0.5334 0.2803

Elast. 0.3867 0.4924 0.4260 0.2729 0.7049 0.4016
5 Shell§ 0.4118 0.5443 0.3922 0.2479 0.5995 0.3511

Shell~ 0.4068 0.5336 0.3858 0.2638 0.6939 0.3857
4

Elast. 0.4271 0.5379 0.4160 0.1555 0.4869 0.2425
10 Shell§ 0.4344 0.5525 0.4068 0.1462 0.4400 0.2235

Shell~ 0.4068 0.5492 0.4050 0.1524 0.4756 0.2349

Elast. 0.3755 0.4837 0.4094 0.1324 0.3450 0.3892
5 Shellt 0.4022 0.5321 0.3833 0.1210 0.2949 0.3429

Shellt 0.3973 0.5220 0.3769 0.1290 0.3416 0.3769
Plate

Elast. 0.420111 0.5333 0.4093 0.152411 0.4801 0.2375
10 Shellt 0.4299 0.5480 0.4027 0.1447 0.4407 0.2213

Shellt 0.4283 0.5451 0.4010 0.1508 0.4734 0.2326

tHSDTwith Km = I.
t HSDT with Km calculated from eqns (29).
§Shallow HSDT with Km = I.
~ Shallow HSDT with Km calculated from eqns (29).
II Also see Pagano (1970).

the shear correction factors on the shell solutions is more significant for the laminates
having a large number of layers. For example, considering laminates with Ria = 5 and
alh = to having various layer numbers N = 2, 3, 4, 5, to, the ratios of center deflections
between shallow shell solutions without resort to the shear correction factors (Km = I) and
elasticity solutions are 98.4%, 94.3%, 90.0%, 92.2% and 93.1 %, respectively. However,
the ratios between shallow shell solutions with shear correction factors and elasticity solutions
are 99.7%,99.9%, toO. I%,99.8% and 99.8%, respectively.

CONCLUDING REMARKS

A laminated shell theory based on the orthogonal curvilinear coordinates has been
presented. Upon applying the Donnell shallow shell approximation, the theory leads to the
Reddy formulation in the case where the laminate has a Euclidean middle surface and
constant principal curvatures. Shear correction factors are introduced in the present higher
order theory to accommodate the effect of the continuity of the interlaminar shear stresses.
The shear correction factors are calculated from an iterative formulation based on the shear
strain energy equivalence.

The effect of shear correction factors upon the structural responses predicted using the
HSDT was examined by comparing the shell solutions to the elasticity solutions. The
influence of shear correction factors is significant on the deflection behaviour ofmoderately
thick laminates having a large number of layers. For the cases of two- and three-layer
laminates, the HSDT predicts fairly accurate structural responses without resort to the
shear correction factors.
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Table 6. Nondimensional center deflections, Iii = w(aI2, b/2, O)lh x E21p x (hla) 4 x 100, of laminated spherical
panels and plates (R, = Ry = R, bla = I)

Layer No.
Ria alh Theory N=2 N=3 N=4 N=5 N=IO

Elast. (1.664) (1.510) (1.465) (1.399) (1.317)
Elast. 1.646 1.482 1.434 1.376 1.284

5 Shellt 1.615 1.420 1.228 1.217 1.148
Shellt 1.683 1.519 1.498 1.404 1.315
Shell§ 1.551 1.363 1.177 1.167 1.101
Shell~ 1.618 1.459 1.439 1.348 1.262

2
Elast. 0.8533 0.6087 0.6128 0.5671 0.5495
Shellt 0.8480 0.5840 0.5673 0.5344 0.5221

10 Shellt 0.8567 0.6119 0.6170 0.5696 0.5516
Shell§ 0.8207 0.5633 0.5471 0.5151 0.5031
Shell~ 0.8292 0.5905 0.5956 0.5494 0.5319

5 Elast. (1.761) (1.585) (1.533) (1.456) (1.362)
Elast. 1.736 1.549 1.495 1.417 1.320
Shell§ 1.684 1.461 1.240 1.228 1.151
Shell~ 1.762 1.573 1.553 1.443 1.340

5
Elast. 1.157 0.7325 0.7408 0.6707 0.6451

10 Shell§ 1.13911 0.690511 0.6664 0.6182 0.6008
Shell~ 1.153 0.7318 0.7418 0.6696 0.6436

Elast. (1.744) (1.567) (1.516) (1.439) (1.345)
5 Elast. 1.712 1.525 1.471 1.392 1.296

Shellt 1.667tt 1.442 1.218 1.207 1.129tt
Shellt 1.745 1.554 1.535 1.423 1.319

Plate
Elast. 1.227 0.7530 0.7624 0.6866 0.6592

10 Shellt 1.21611tt 0.712511 0.6966 0.6346 0.6160tt
Shellt 1.232 0.7572 0.7685 0.6900 0.6619

Figures in parentheses indicate elasticity results sampled on z = h12.
tHSDTwith Km = I.
t HSDT with Km calculated from eqns (29).
§Shallow HSDT with Km = I.
~ Shallow HSDT with Km calculated from eqns (29).
II Also see Reddy and Liu (1985) [multiplied by a factor (I +hIRI2)~.
tt Also see Khdeir and Reddy (1991).
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